Circulation Heaters - EX

Application

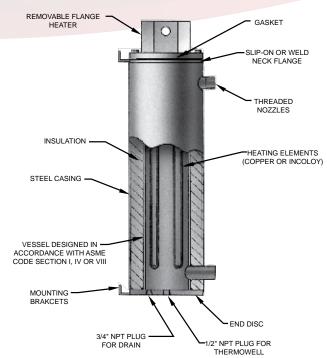
Caloritech[™] circulation heaters are suitable for use in forced flow and natural flow heating loops where a safe, Clean, reliable, and efficient heating source is required.

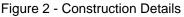
Liquid Heating

Virtually any liquid may be heated provided that the system design ensure that the heater vessel remains completely full of liquid when in use. Forced flow heating (with circulator pump) is mandatory when heating heavier liquids or heating liquids to high temperatures. Natural flow systems are generally limited to "side arm" water heating applications where the heater is mounted vertically and the top of the heater is well below the minimum tank liquid level.

Gas Heating

In gas heating applications, such as steam superheating, heating compressed air, nitrogen, ammonia, etc., flow must be sufficient to ensure that the maximum allowable vessel and sheath temperatures are not exceeded. CCI Thermal engineers will assist in the selection of the best heater for your particular application. Call, email or write factory, or contact your nearest Calroitech[™] representative or distributor.


Registration


Circulation heaters may be classified as boilers or pressure vessels depending on fluid being heated, kW rating, vessel size, operating pressure and outlet temperature. Registration requirements are imposed by the jurisdiction where the heater is to be installed.

CCI Thermal registered vessels are authorized to bear the S, H or U stamp depending on the Code classification.

Figure 1 - Standard EX Unit Mounted on Optional Stand

Construction

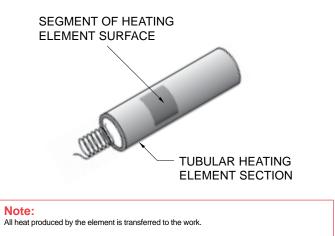
Circulation heaters are essentially flange heaters mounted in welded vessels.

Standard sizes use steel vessels fitted with 150 lb. flanges. Units with larger vessels and heavier flanges are available.

For closed systems the heaters are designed to Sect. I, IV, or VIII of the ASME Code.

For high temperature use, heaters can be provided with stainless steel wetted parts and specially designed terminal boxes protected from excessive heat. Consult factory.

Built-In Limits and Thermostats


Built-in high limits and thermostats are available.

Standard built-in thermostat is a one pole device limited to 240V 25 amp. Whenever the heater voltage exceeds 240V or the heater current exceeds 25 amps or for three phase supply, the thermostat is intended for pilot duty only and is not factory wired to the elements. See Section F of the Caloritech[™] catalog for selection of the contactor and control transformer you may require in these instances.

Watt Density

Watt density refers to the wattage output of a heater divided by the total surface area of the heated section of all heating elements in the heater.

It is important to understand the basic terminal difference between an electric immersion heater and a steam or liquid heat exchanger. Unlike the steam or liquid heat exchanger, all of the heat produced by an electric heater will leave the heater. Even though the surface area in contact with the work is fixed, the heating element sheath temperature will continue to rise until the heat produced is equal to the heat transferred to the process.

A detailed understanding of this behaviour and the system parameters will allow the design of a suitable heater to heat virtually any liquid or gas with the only limitation being its ability to resist corrosion in highly active solutions.

As a general rule, low watt density heaters will provide longer service life than high density heaters, especially when the fluid being heated is viscous or stagnant. However, low density heaters are initially more expensive and in larger systems it is best to check with the factory for assistance in optimizing the heater selection.

See page D50 for recommended watt densities for some of the more common fluids.

CAUTION - IMPROPER SELECTION OF WATT DENSITY CAN RESULT IN DAMAGE TO THE PRODUCT AND FAILURE OF THE HEATER.

Installation

The heaters are generally suitable for horizontal or vertical vessel orientation as shown in Figures 3, 4 and 5.

Figure 3 - Liquid Heating or Low Temperature Gas Heating (Vertical Installation)

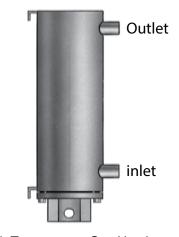


Figure 4 - High Temperature Gas Heating (Vertical Installation)

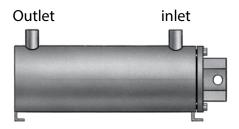


Figure 5 - Gas or Liquid Heating (Horizontal Installation)

Circulation Heaters Custom Designed Assemblies

Skidded circulation heater assemblies are available for process heating in chemical processing, mining, refining, etc.

Multiple staged assemblies with control panel, valving, pumps or fans, chillers, expansion tanks, etc. can be engineered and fabricated by CCI Thermal using state-of-the-art technology and manufacturing procedures

Our complete in-house capability... elements, vessels, CNC equipped machine shop, panel shop, CAD design... directed by a team of highly skilled professionals ensures that our products will provide value.

Registered engineers are available for start-up supervision anywhere in the world.

If it can be done electronically, chances are we've done it before. Design proposals are submitted without cost or obligation on receipt of the bid request and specifications.

Miniature Circulation Heaters

Miniature circulation heaters provide an economical source of heat in many applications. In stationary systems, these heaters do not normally require mounting support other than the inlet and outlet piping connections.

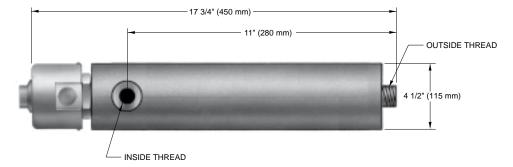
Construction

The basic construction of this series of heaters is a one inch or one and a quarter inch pipe fitted with a pipe "T" to accept a suitable screwplug heater. The pipe is insulated with 1 1/4" (32 mm) to 1 1/2" (38 mm) of FSK insulation protected by a 20-gauge steel casing.

Units are available with or without thermostats and with general purpose, moisture resistant or explosion-proof terminal housings.

If the outlet liquid or gas temperature exceeds 300°F (150°C), use the end away from the terminal box as the outlet. Otherwise, use the outside threaded connection as the system inlet.

Type EXC


All wetted parts in brass or copper. Used for heating water, glycol water solutions or other liquids of low viscosity which will not corrode the heater materials.

Type EXF

Incoloy[®] elements with steel screwplug and vessel. Used for heating oils, low pressure steam, preheating instrument air, etc. Select lower watt density listings for heavier liquids.

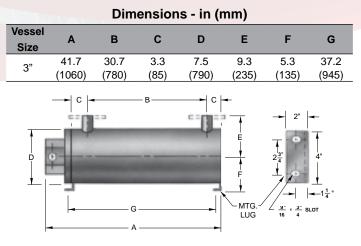
Special Features

- · Stainless steel wetted parts
- · Moisture resistant or explosion-proof housings
- Special wattage (length will increase for same watt density)
- · Special thermostat range

Miniature Circulation Heaters

kW	Standard Voltages 1	Watt D	ensity	Without Thermostat	With Thermostat 50-250°F (10 - 120°C)	Net Weig	ght
	Phase only	W/cm ²	W/in²	Catalog Number	Catalog Number	lbs	kg
Type EXC - Cop	per Sheath (Brass Pl	ug & Vessel With	1" NPT Connec	ctions)			
1.0	120, 280, 240			EXC110P1	EXCT110P1		
1.5	-	80	12.4	EXC115P1	EXCT115P1	13.2	6
2.0	-	80	12.4	EXC120P1	EXCT120P1	13.2	0
3.0	208,240			EXC130P1	EXCT130P1		
Type EXF - Inco	loy [®] Sheath (Steel Pl	ug & Vessel With	1 1/4" NPT Con	inections)			
0.6	120, 208, 240	15	2.3	EXF206P12	EXFT206P12	17.6	0
1.0	-	25	3.9	EXF210P12		176	0

Type EXC


Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.

Type EXI

May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

Type EXF

To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.

To Order Specify

Quantity, catalog number, voltage, phase, wattage, special features, fluid to be heated, operating temperature and pressure, ultimate owner's name and address, installation location name and address.

	B' Dimensions Standard Volt Inlet/Outlet 208V, 240V 480								Mith and T	'h e waa e et et	With The	ermostat		a i a la f
L-\\\/	Inlet/0	Dutlet	208V,	240V	480V,	600V	watt L	Density	without I	hermostat	50°F to 250°F (10°C to 120°C)	Net W	eignt
KVV	in	mm	1Ø	3Ø	1Ø	3Ø	W/in2	W/cm ²	Catalog	Part Number	Catalog	Part Number	lbs	ka
		111111		30		30	VV/111-	ww/cm-	Number	Fait Nulliber	Number	Fait Nulliber	105	kg
3" - 150 I	b Flanged	Steel Ve	ssel W	ith 1" ((25 mn	n) Inle	t And C	Outlet						
High Den	sity - Cop	per Shea	ıth											
6.0							60	9.3	EXC306F3	NWH-3-306	EXCT306F3		108.6	47.0
9.0							55	8.5	EXC309F3	NWH-3-309	EXCT309F3		105.8	48.0
12.0	30.7	780		1		1	54	8.4	EXC312F3	NWH-3-312	EXCT312F3	—	105.8	48.0
18.0							55	8.5	EXC618F3	-	EXCT618F3		112.4	51.0
24.0							54	8.4	EXC624F3	-	EXCT624F3		112.4	51.0
High Den	sity - Inco	oloy® She	ath											
6.0							60	9.3	EXI306F3		EXIT306F3		108.6	47.0
9.0							55	8.5	EXI309F3		EXIT309F3		105.8	48.0
12.0	30.7	780				1	54	8.4	EXI312F3	-	EXIT312F3	—	105.8	48.0
18.0							55	8.5	EXI618F3		EXIT618F3		112.4	51.0
24.0							54	8.4	EXI624F3		EXIT624F3		112.4	51.0
Medium	Density - I	ncoloy® S	Sheath											
3.0							30	4.6	EXF303F3	-	EXFT303F3		108.6	47.0
4.5	30.7	780	1	1	1	1	27	4.2	EXF304F3	—	EXFT304F3	—	105.8	48.0
6.0							27	4.2	EXF306F3	NWHO-3-306	EXFT306F3		105.8	48.0
Low Den	sity - Inco	loy [®] Shea	ath											
3.0	30.7	780	1	1	1	1	14	2.1	EXF303F332	NWHO-3L-303	EXFT303F332		105.8	48.0

EX

Type EXC


Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.

Type EXI

May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

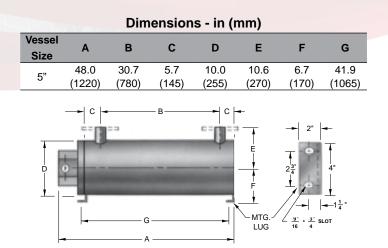
Type EXF

To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.

To Order Specify

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B' Dime	ensions	Sta	ndard	Volta	ges					With The	ermostat		
kw in mm 1Ø 3Ø 1Ø 3Ø W/in ² W/cm ² Catalog Number Part Number Catalog Number Part Number Part Number Number Part Number <	1.14/	Inlet/0	Outlet	208V,	240V	480V,	600V	Watt L	Jensity	Without I	hermostat	50°F to 250°F ((10°C to 120°C)	Net W	eight
4" - 150 lb Flanged Steel Vessel With 1 1/2" (38 mm) Inlet And Outlet High Density - Copper Sheath 60 8.4 EXC612F4 EXCT612F4 138.9 63. 12.0 15.0 30.7 780 780 7 780 7 8.8 EXC612F4 EXCT612F4 138.9 63. 12.0 57 8.8 EXC615F4 EXCT612F4 141.1 64. 18.0 30.7 780 7 780 7 55 8.5 EXC618F4 EXCT612F4 141.1 64. 18.0 24.0 54 8.4 EXC918F4 EXCT918F4 147.7 67. 36.0 54 8.4 EXC927F4 EXCT918F4 147.7 67. 36.0 54 8.4 EXC936F4 EXC1927F4 149.9 68. 36.0 54 8.4 EXC936F4 EXC192F4 149.9 63. 12.0 54 8.4 EXC936F4 EXC1927F4 149.9 63. 15.0 30.7 780 7 57 8.8 EXI612F4 EXI7612F4 141.1	KVV	·		10	20	40	20	VALL: 12	-	Catalog	Dant Number			llha	l. a
High Density - Copper Sheath12.012.012.012.012.0138.963.15.030.7780780778077807141.164.18.018.018.018.018.418.218.418.2141.164.18.018.018.018.418.218.418.2141.164.18.018.018.418.218.418.2141.164.18.018.018.414.214.160.9.318.2147.727.030.778018.414.5558.518.218.4147.712.018.019.414.514.414.414.414.414.512.019.419.519.519.519.519.6152.169.12.019.019.419.519.519.614.114.164.14.018.030.778019.419.518.81615F4121.114.164.14.018.019.419.519.519.519.519.519.519.519.519.515.030.778019.419.519.519.519.519.519.519.514.114.164.18.019.419.519.519.519.519.519.514.114.114.114.114.114.114.114.11		in	mm		30	שו	30	vv/m-	w/cm-	Number	Part Number	Number	Part Number	au	кд
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ith 1 1	/2" (38	5 mm)	nlet Ar	nd Outlet	t					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		sity - Cop	per Shea	<u>ith</u>											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-									EXC612F4		EXCT612F4		138.9	63.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.0	20.7	790	1	1	1	1	57	8.8	EXC615F4		EXCT615F4		141.1	64.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.0	30.7	700					55	8.5	EXC618F4	_	EXCT618F4	_	141.1	64.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24.0									EXC624F4		EXCT624F4		141.1	64.0
36.0 Image: sty = lncoloy® Sheath 54 8.4 EXC936F4 EXCT936F4 152.1 69. 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 138.9 63. 15.0 30.7 780 ✓ ✓ ✓ 57 8.8 EXI612F4 EXIT615F4 141.1 64. 18.0 24.0 54 8.4 EXI624F4 EXIT618F4 141.1 64. 18.0 27.0 30.7 780 ✓ ✓ 55 8.5 EXI918F4 EXIT612F4 141.1 64. 18.0 27.0 30.7 780 ✓ ✓ 55 8.5 EXI921F4 EXIT612F4 141.1 64. 18.0 27.0 30.7 780 ✓ ✓ 55 8.5 EXI927F4 - EXIT927F4 - 149.9 68. 36.0 30.7 780 ✓ ✓ 55 8.5 EXI936F4	18.0							60	9.3	EXC918F4		EXCT918F4		147.7	67.0
High Density - Incoloy® Sheath 12.0 60 8.4 EXI612F4 EXIT612F4 138.9 63. 15.0 30.7 780 7 7 57 8.8 EXI615F4 EXIT615F4 141.1 64. 18.0 24.0 54 8.4 EXI624F4 EXIT618F4 141.1 64. 18.0 27.0 30.7 780 7 7 55 8.5 EXI918F4 EXIT612F4 141.1 64. 18.0 60 9.3 EXI924F4 EXIT612F4 141.1 64. 18.0 54 8.4 EXI927F4 EXIT918F4 147.7 67. 27.0 30.7 780 7 7 55 8.5 EXI927F4 149.9 68. 36.0 54 8.4 EXI927F4 EXIT936F4 152.1 69. Medium Density - Incoloy® Sheath 54 8.4 EXI936F4 EXIT936F4 152.1 69.	27.0	30.7	780	1	1	1	1	55	8.5	EXC927F4	—	EXCT927F4	—	149.9	68.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								54	8.4	EXC936F4		EXCT936F4		152.1	69.0
15.0 30.7 780 Image: Constraint of the second	High Dens	sity - Inco	oloy [®] She	ath											
18.0 30.7 780 7 7 7 55 8.5 EXI618F4 — EXIT618F4 — 141.1 64. 24.0 18.0 54 8.4 EXI624F4 EXIT624F4 141.1 64. 18.0 27.0 30.7 780 7 7 55 8.5 EXI918F4 EXIT918F4 147.7 67. 27.0 30.7 780 7 7 55 8.5 EXI927F4 — EXIT938F4 149.9 68. 36.0 100000 54 8.4 EXI936F4 EXIT936F4 152.1 69. Medium Density - Incoloy® Sheath	12.0							60	8.4	EXI612F4		EXIT612F4		138.9	63.0
18.0 24.0 - - - 55 8.5 EXI618F4 EXI1618F4 141.1 64. 24.0 - 54 8.4 EXI624F4 EXIT624F4 141.1 64. 18.0 - - 60 9.3 EXI918F4 EXIT918F4 141.7 67. 27.0 30.7 780 ✓ ✓ 55 8.5 EXI927F4 - EXIT927F4 - 149.9 68. 36.0 - - 54 8.4 EXI936F4 EXIT936F4 152.1 69. Medium Density - Incoloy® Sheath - - - - - 54 8.4 EXI936F4 152.1 69.	15.0	20.7	700					57	8.8	EXI615F4		EXIT615F4		141.1	64.0
18.0 27.0 30.7 780 ✓ ✓ ✓ 55 8.5 EXI918F4 — EXIT918F4 147.7 67. 27.0 30.7 780 ✓ ✓ 55 8.5 EXI927F4 — EXIT927F4 — 149.9 68. 36.0 Medium Density - Incoloy® Sheath — ✓ <td>18.0</td> <td>30.7</td> <td>780</td> <td>· ·</td> <td>·</td> <td>·</td> <td>· ·</td> <td>55</td> <td>8.5</td> <td>EXI618F4</td> <td>_</td> <td>EXIT618F4</td> <td>_</td> <td>141.1</td> <td>64.0</td>	18.0	30.7	780	· ·	·	·	· ·	55	8.5	EXI618F4	_	EXIT618F4	_	141.1	64.0
27.0 30.7 780 ✓ ✓ ✓ 55 8.5 EXI927F4 — EXIT927F4 — 149.9 68. 36.0 Medium Density - Incoloy® Sheath — 54 8.4 EXI936F4 — EXIT936F4 — 152.1 69.	24.0							54	8.4	EXI624F4		EXIT624F4		141.1	64.0
36.0 54 8.4 EXI936F4 EXIT936F4 152.1 69. Medium Density - Incoloy® Sheath	18.0				1			60	9.3	EXI918F4		EXIT918F4		147.7	67.0
Medium Density - Incoloy [®] Sheath	27.0	30.7	780	1	1	1	1	55	8.5	EXI927F4	_	EXIT927F4	_	149.9	68.0
	36.0							54	8.4	EXI936F4		EXIT936F4		152.1	69.0
	Medium D	Density - I	ncoloy® S	Sheath											
								30	4.6	EXF606F4		EXFT606F4		138.9	63.0
9.0 30.7 780 🖌 🖌 🖌 27 4.2 EXF609F4 — EXFT609F4 — 143.3 65.	9.0	30.7	780		1	1	1	27	4.2	EXF609F4	_	EXFT609F4	_	143.3	65.0
12.0 27 4.2 EXF612F4 EXFT612F4 143.3 65.	12.0							27	4.2	EXF612F4		EXFT612F4		143.3	65.0
9.0 30 4.6 EXF909F4 EXFT909F4 149.9 68.	9.0							30	4.6	EXF909F4		EXFT909F4		149.9	68.0
13.5 30.7 780 🖌 🖌 🖌 27 4.2 EXF913F4 — EXFT913F4 — 152.1 69.	13.5	30.7	780	1	1	1	1	27	4.2	EXF913F4	_	EXFT913F4	_	152.1	69.0
18.0 27 4.2 EXF918F4 EXFT918F4 154.3 70.	18.0							27	4.2	EXF918F4		EXFT918F4		154.3	70.0
Low Density - Incoloy® Sheath	Low Dens	sity - Inco	loy [®] Shea	ath									-		
6 0 EXE606E432 EXET606E432 143 3 65								11	2.4	EXF606F432		EXFT606F432		143.3	65.0
9.0 30.7 780 \checkmark \checkmark \checkmark \checkmark 14 2.1 EXF909F432 - EXFT909F432 - 145.5 69.	9.0	30.7	780		·	·	· ·	14	2.1	EXF909F432	_	EXFT909F432	_	152.1	69.0

Type EXC

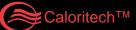

Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.

Type EXI

May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

Type EXF

To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.


To Order Specify

Quantity, catalog number, voltage, phase, wattage, special features, fluid to be heated, operating temperature and pressure, ultimate owner's name and address, installation location name and address.

		nsions	– 5ta	ndard	Voltag	jes					With The	ermostat		
1.147	Inlet/O	utlet	208V,	240V	480V,	600V	Watt L	Density	Without T	hermostat	50°F to 250°F (10°C to 120°C)	Net W	eight
kW	•		10	• a	40		14//2	-	Catalog	Danit Manada an	Catalog			
	in	mm	1Ø	3Ø	1Ø	3Ø	vv/in-	W/cm ²	Number	Part Number	Number	Part Number	lbs	kg
5" - 150 lb F	Flanged	Steel Ves	ssel Wi	ith 2" (51 mn	n) Inlet	t And C	utlet						
High Densit	ty - Cop	per Shea	th											
12.0							60	8.4	EXC612F5	—	EXCT612F5		138.9	63.0
15.0	30.7	780	1	1	1	1	57	8.8	EXC615F5	—	EXCT615F5		141.1	64.0
18.0	30.7	100		•	×	~	55	8.5	EXC618F5	—	EXCT618F5	_	141.1	64.0
24.0							54	8.4	EXC624F5	NWH-5-624	EXCT624F5		141.1	64.0
18.0							60	9.3	EXC918F5		EXCT918F5		147.7	67.0
27.0	30.7	780		1	1	1	55	8.5	EXC927F5	—	EXCT927F5	—	149.9	68.0
36.0							54	8.4	EXC936F5		EXCT936F5		152.1	69.0
High Densit	ty - Incol	loy [®] Shea	ath											
12.0							60	8.4	EXI612F5		EXIT612F5		138.9	63.0
15.0	30.7	780		1	1	1	57	8.8	EXI615F5		EXIT615F5		141.1	64.0
18.0	30.7	100		•	•	•	55	8.5	EXI618F5	—	EXIT618F5	_	141.1	64.0
24.0							54	8.4	EXI624F5		EXIT624F5		141.1	64.0
18.0							60	9.3	EXI918F5		EXIT918F5		147.7	67.0
27.0	30.7	780		1	1	1	55	8.5	EXI927F5	—	EXIT927F5	—	149.9	68.0
36.0							54	8.4	EXI936F5		EXIT936F5		152.1	69.0
Medium Der	nsity - Ir	ncoloy® S	Sheath											
6.0							30	4.6	EXF606F5	—	EXFT606F5		138.9	63.0
9.0	30.7	780		1	1	1	27	4.2	EXF609F5	—	EXFT609F5	—	143.3	65.0
12.0							27	4.2	EXF612F5	NWHO-5-612	EXFT612F5		143.3	65.0
9.0							30	4.6	EXF909F5		EXFT909F5		149.9	68.0
13.5	30.7	780		1	1	1	27	4.2	EXF913F5	—	EXFT913F5	—	152.1	69.0
18.0							27	4.2	EXF918F5		EXFT918F5		154.3	70.0
Low Density	y - Incol	oy [®] Shea	th											
6.0	30.7	780	1	1	,	1	14	2.1	EXF606F532		EXFT606F532		143.3	65.0
9.0	30.7	700		~	1	~	14	2.1	EXF909F532		EXFT909F532		152.1	69.0

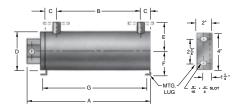
EΧ

Circulation Heaters

Type EXC

Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.

Type EXI


May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

Type EXF

To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.

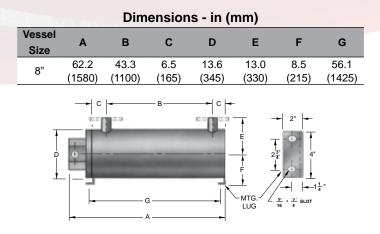
Dimensions - in (mm)

Vessel Size	Α	В	С	D	E	F	G
	48.0	30.7	5.7	11.0	11.4	7.1	41.9
6"	(1220)	(780)	(145)	(280)	(290)	(180)	(1065)
0	60.6	43.3	5.7	11.0	11.4	7.1	54.5
	(1540)	(1100)	(145)	(280)	(290)	(180)	(1385)

To Order Specify

Intervent 208V, 240V 480V, 600V Wait Density Without Thermostat 50°F to 250°F (10°C to 120°C). Net Weight 6" - 150 Ib Flanged Steel Vessel With 2" (51 mm) Intet And Outlet Mumber Catalog Part Number Number <th></th> <th>B' Dime</th> <th>ensions</th> <th>Sta</th> <th>andard</th> <th>Volta</th> <th>ges</th> <th></th> <th>D</th> <th>Milde and T</th> <th></th> <th>With The</th> <th>ermostat</th> <th>NI - 4 34</th> <th>(</th>		B' Dime	ensions	Sta	andard	Volta	ges		D	Milde and T		With The	ermostat	NI - 4 34	(
in mm 10 30 Win ² Catalog Part Number Catalog Part Number Number 6" - 150 Ib Flanged Steel Vessel With 2" (51 mm) Inlet And Outlet High Density - Coper Sheath 60.0 30.7 780 - - - EXC1236F6 - EXC1236F6 - 200.6 91.0 60.0 43.3 1100 - - 55 8.5 EXC1236F6 - EXC11246F6 - 200.8 92.0 93.0 72.0 43.3 1100 - - 55 8.5 EXC1236F6 NHH-6-128 EXC11436F6 200.6 93.0 78.0 - - 55 8.5 EXC1236F6 - EXC11436F6 201.6 93.0 90.0 43.3 1100 - ✓ 54 8.4 EXC1575F6 - EXC11506F6 201.6 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0 <th>۲/۷/</th> <th>Inlet/</th> <th>Outlet</th> <th>208V,</th> <th>240V</th> <th>480V,</th> <th>600V</th> <th>watt</th> <th>Density</th> <th></th> <th>nermostat</th> <th>50°F to 250°F (</th> <th>10°C to 120°C)</th> <th></th> <th>leight</th>	۲/۷/	Inlet/	Outlet	208V,	240V	480V,	600V	watt	Density		nermostat	50°F to 250°F (10°C to 120°C)		leight
G* 150 Flanged Steel Vessel With 2* (51 mm) Inlet And Outlet High Density - Copper Sheath 55 8.5 EXC1236F6 - EXCT1236F6 200.6 91.0 36.0 30.7 780 - ✓ ✓ 54 8.4 EXC1236F6 - EXCT1236F6 200.6 91.0 60.0 30.7 780 - ✓ ✓ 54 8.4 EXC1236F6 NHW-6-1270 EXCT124F6 200.6 91.0 72.0 43.3 1100 - ✓ 55 8.5 EXC154F6 EXCT1545F6 200.1 200.9 93.0 90.0 43.3 1100 - ✓ 54 8.4 EXC150F6 EXCT150F6 246.9 112.0 90.0 43.3 1100 - ✓ 54 8.4 EX11236F6 EXCT150F6 246.9 112.0 90.0 43.3 1100 - ✓ 55 8.5 EX11236F6 EX11236F6 202.8 20.0 <td< th=""><th>K V V</th><th>in</th><th>mm</th><th>10</th><th>30</th><th>10</th><th>30</th><th>W/in2</th><th>W/cm²</th><th>Catalog</th><th>Part Number</th><th>Catalog</th><th>Part Number</th><th>lbe</th><th>ka</th></td<>	K V V	in	mm	10	30	10	30	W/in2	W/cm ²	Catalog	Part Number	Catalog	Part Number	lbe	ka
$ \begin{array}{ $										Number	i art itamber	Number	r art Number	103	Ng
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					With 2	" (51 r	nm) In	let And	d Outlet						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							1	EE	0 5	EVC4006E6		EVOT4000EC		200.6	01.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1	1	1	-					—		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								-	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											110011-0-1272				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				_		1	1	-	-		_		_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					<u> </u>	•	•	-	-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					_										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	High Der	nsity - Inc	oloy® Sh	eath											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36.0	30.7	780	 ✓ 				55	8.5	EXI1236F6		EXIT1236F6		200.6	91.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	48.0	30.7	780					54	8.4	EXI1248F6		EXIT1248F6		202.8	92.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	60.0	43.3	1100			-	~	54	8.4	EXI1260F6	_	EXIT1260F6	—	209.4	95.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	72.0	43.3	1100	_				53	8.2	EXI1272F6		EXIT1272F6		211.6	96.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	45.0	30.7	780		1			55	8.5	EXI1545f6		EXIT1545f6		205.0	93.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	60.0	30.7	780		1			54		EXI1560F6		EXIT1560F6		211.6	96.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	75.0	43.3	1100	-	1			54	8.4	EXI1575f6	—	EXIT1575f6	—	240.3	109.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90.0	43.3	1100					53	8.2	EXI1590F6		EXIT1590F6		246.9	112.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90.0					1		54	8.4	EXI1890F6		EXIT1890F6		246.9	112.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120.0	43.3	1100	—	—	_	1	70	10.9	EXI15120F6	_	EXIT15120F6	_	251.3	114.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	144.0							70	10.9	EXI18144F6		EXIT18144F6		260.2	118.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Medium	Density -	Incoloy®	Shea	th										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.0										NWHO-6-1218	EXFT1218F6			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1	1	1	1				NWHO-6-1224	EXFT1224F6	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							•	27							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											NWHO-6-1236				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1	1	1	1				_		_		
Low Density - Incoloy® Sheath 12.0 30.7 780 Image: Colored Colo															
12.0 30.7 780 Image: Constraint of the system of th								26	4.1	EXF1545F6		EXF11545F6		246.9	112.0
18.0 43.3 1100 ✓ ✓ ✓ 16 2.5 EXF1218F639 NWHO-6L-1218 EXFT1218F639 — 233.7 106.0 24 43.3 1100 ✓ ✓ 16 2.5 EXF1218F639 — EXFT1218F639 — 233.7 106.0 15 30.7 780 ✓ 14 2.1 EXF1515F6 EXFT1515F6 209.4 95 22.5 43.3 1100 ✓ ✓ ✓ 16 2.5 EXF1522F639 — EXFT1522F639 — 242.5 110				eath	1		1	11	2.1	EVE1010EC		EVET1010EC		202.0	00.0
24 43.3 1100 18 2.7 EXF1224F647 — EXFT1224F647 244.7 111 15 30.7 780 14 2.1 EXF1515F6 EXFT1515F6 209.4 95 22.5 43.3 1100 ✓ ✓ ✓ 16 2.5 EXF1522F639 — EXFT1522F639 — 242.5 110				1	1	1	1								
15 30.7 780 14 2.1 EXF1515F6 EXFT1515F6 209.4 95 22.5 43.3 1100 Image:				v	ľ	•	•						—		
22.5 43.3 1100 🗸 🗸 🗸 16 2.5 EXF1522F639 — EXFT1522F639 — 242.5 110				1											
				1	1	1	1				_		_		
				•	•	·	· ·								

Type EXC


Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.

Type EXI

May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

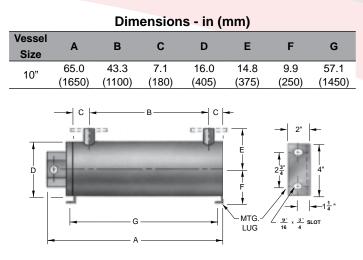
Type EXF

To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.

To Order Specify

	B' Dime	ensions	Sta		Volta	-	Mott I	Density	Without T	hermostat	With The	ermostat	Not 1	/eight
kW	Inlet/0	Outlet	208V,	240V	480V,	600V	wall L	Jensity		lennostat	50°F to 250°F (10°C to 120°C)		reignit
NVV	in	mm	1Ø	3Ø	1Ø	3Ø	W/in ²	W/cm ²	Catalog	Part Number	Catalog	Part Number	lbs	kg
									Number	i art itallibei	Number	i art itumber	103	Ng
<u>8" - 150 lk</u>				With 2	1/2" (<u>64 mm</u>) Inlet	And Out	let				-	
High Den	sity - Co	pper She	eath											
54.0							55	8.5	EXC1854F8		EXCT1854F8			106.0
72.0	43.3	1100		1	1	1	54	8.4	EXC1872F8	_	EXCT1872F8	_		109.0
90.0							54	8.4	EXC1890F8		EXCT1890F8			142.0
108.0							53	8.2	EXC18108F8		EXCT18108F8			144.0
81.0				1			55	8.5	EXC2781F8		EXCT2781F8			148.0
108.0	43.3	1100	_	—	1	1	54	8.4	EXC27108F8	_	EXCT27108F8	_		152.0
135.0				—	-		54	8.4	EXC27135F8		EXCT27135F8			157.0
162.0				—	—		53	8.2	EXC27162F8		EXCT27162F8		352.7	160.0
High Den	sity - Inc	oloy [®] Sh	eath					0.5						100.0
54.0							55	8.5	EXI1854F8		EXIT1854F8			106.0
72.0	43.3	1100	_	1	1	1	54	8.4	EXI1872F8	_	EXIT1872F8	_		109.0
90.0				•	•	•	54	8.4	EXI1890F8		EXIT1890F8			142.0
108.0							53	8.2	EXI18108F8		EXIT18108F8			144.0
81.0					1		55	8.5	EXI2781F8		EXIT2781F8			148.0
108.0	43.3	1100	_	—	1	1	54	8.4	EXI27108F8	_	EXIT27108F8	_		152.0
135.0	40.0	1100		—		•	54	8.4	EXI27135F8		EXIT27135F8			157.0
162.0				—	—		53	8.2	EXI27162F8		EXIT27162F8			160.0
120.0							70	10.9	EXI15120F8		EXIT15120F8			142.0
144.0	43.3	1100	_	_	_	1	70	10.9	EXI18144F8	_	EXIT18144F8	_		145.0
168.0	40.0	1100				, v	70	10.9	EXI21168F8		EXIT21168F8			148.0
192.0							70	10.9	EXI24192F8		EXIT24192F8			151.0
216.0	43.3	1100		_		1	70	10.9	EXI27216F8	_	EXIT27216F8	_		154.0
240.0						v	70	10.9	EXI30240F8		EXIT30240F8		346.1	157.0
Medium E	Density -	Incoloy®	1	h										
36.0			1				27	4.2	EXF1836F8		EXFT1836F8			138.0
54.0	43.3	1100	—	1	1	1	26	4.1	EXF1854F8	_	EXFT1854F8	_		145.0
63.0			<u> </u>				26	4.1	EXF2163F8		EXFT2163F8			149.0
72.0							26	4.1	EXF2472F8		EXFT2472F8			152.0
81.0	43.3	1100	-	—	1	1	26	4.1	EXF2781F8	_	EXFT2781F8	_		155.0
90.0							26	4.1	EXF3090F8		EXFT3090F8		348.3	158.0
Low Dens	sity - Inco	oloy® Sh	eath											
27.0							16	2.5	EXF1827F8		EXFT1827F8			142.0
31.5	43.3	1100	1	1	1	1	16	2.5	EXF2131F8	_	EXFT2131F8	_		144.0
36.0	40.0	1100	· ·	~			16	2.5	EXF2436F8		EXFT2436F8	—	321.9	146.0
36.0							17	2.7	EXF1836F847		EXFT1836F847			146.0
40.5							16	2.5	EXF2740F8		EXFT2740F8		328.5	149.0
45.0	43.3	1100		1	1	1	16	2.5	EXF3045F8	—	EXFT3045F8	—	335.1	152.0
54							17	2.7	EXF2754F8		EXFT2754F8		343.9	156.0

Type EXC


Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.

Type EXI

May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

Type EXF

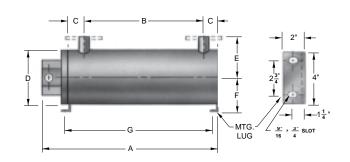
To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.

To Order Specify

	B' Dime	ensions	Sta	Indard	Voltag	ges)onoitu	With out Th	orm o stat	With The	mostat	Not W	laight
kW	Inlet/	Outlet	208V,	240V	480V,	600V	watt L	Density	Without Th	ermostat	50°F to 250°F (1	0°C to 120°C)	Net W	reight
K V V	in	mm	1Ø	3Ø	1Ø	3Ø	W/in2	W/cm ²	Catalog	Part Number	Catalog	Part Number	lbs	ka
				30		30	VV/111-	ww/cm-	Number	Fait Number	Number	Fait Nulliber	105	kg
10" - 150				Vith 3"	' (76 m	m) Inle	et And	Outlet						
High Den			th											
180.0	43.3	1100					63	9.8	EXC36180F10		EXCT36180F10		485.0	220.0
216.0	43.3	1100		—	—	1	60	9.3	EXC36216F10	-	EXCT36216F10	—	498.2	226.0
252.0	43.3	1100					60	9.3	EXC42252F10		EXCT42252F10		520.3	236.0
High Den	sity - Inco	oloy® She	ath											
180.0	43.3	1100					63	9.8	EXI36180F10		EXIT36180F10		485.0	220.0
216.0	43.3	1100	-	—	—	1	60	9.3	EXI36216F10	-	EXIT36216F10	—	498.2	226.0
252.0	43.3	1100					60	9.3	EXI42252F10		EXIT42252F10		520.3	236.0
288.0	43.3	1100					80	12.3	EXI36288F10		EXIT36288F10		498.2	226.0
336.0	43.3	1100	-	—	—	1	80	12.3	EXI42336F10	-	EXIT42336F10	—	520.3	236.0
384.0	43.3	1100					80	12.3	EXI48384F10		EXIT48384F10		542.3	246.0
Medium D	Density -	Incoloy® S	Sheath											
108.0	43.3	1100			1				EXF36108F10		EXFT36108F10		498.2	226.0
126.0	43.3	1100	-	—	—	1	30	4.6	EXF42126F10	-	EXFT42126F10	—	520.3	236.0
144.0	43.3	1100			—				EXF48144F10		EXFT48144F10		537.9	244.0
Low Dens	sity - Inco	loy [®] Shea	ath											
72.0	43.3	1100							EXF3672F10		EXFT3672F10		498.2	226.0
84.0	43.3	1100	-	1	1	1	20	3.1	EXF4284F10	-	EXFT4284F10	_	520.3	236.0
96.0	43.3	1100							EXF4896F10		EXFT4896F10		537.9	244.0

Type EXC

Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.


Type EXI

May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

Type EXF

To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.

Dimensions - in (mm) Vessel в С D Е F Α G Size 65.1 43.3 7.1 19.0 16.1 11.5 57.1 12" (1655) (1100) (180) (480) (410) (290) (1450)

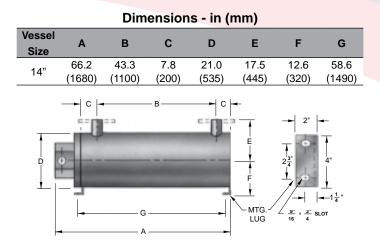
To Order Specify

Quantity, catalog number, voltage, phase, wattage, special features, fluid to be heated, operating temperature and pressure, ultimate owner's name and address, installation location name and address.

	B' Dime	ensions	Sta	Indard	Voltag	ges)onoitu	Mith out T	harmaatat	With The	rmostat	Not M	laight
kW	Inlet/	Outlet	208V,	240V	480V,	600V	watt L	Density	Without T	nermostat	50°F to 250°F (10°C to 120°C)	net w	leight
KVV	in	mm	1Ø	3Ø	1Ø	3Ø	W/in2	W/cm ²	Catalog	Part Number	Catalog	Part Number	- Ibo	ka
	m	mm		30		30	VV/III-	ww/cm-	Number	Part Number	Number	Fart Number	lbs	kg
		jed Steel V		With 3	3" (76 i	mm) In	let And	d Outlet						
High De	nsity - Co	opper She	ath											
240.0	43.3	1100					63	9.8	EXC48240F12		EXCT48240F12		690.1	313.0
288.0	43.3	1100					60	9.3	EXC48288F12		EXCT48288F12		709.9	322.0
324.0	43.3	1100	_	_	_		60	9.3	EXC54324F12	—	EXCT54324F12	—	727.5	330.0
360.0	43.3	1100					60	9.3	EXC60360F12		EXCT60360F12		718.7	326.0
High De	ensity - Ind	coloy® Sh	eath											
240.0	43.3	1100					63	9.8	EXI48240F12		EXIT48240F12		690.1	313.0
288.0	43.3	1100			—		60	9.3	EXI48288F12	—	EXIT48288F12	—	709.9	322.0
324.0	43.3	1100					60	9.3	EXI54324F12		EXIT54324F12		727.5	330.0
360.0	43.3	1100					60	9.3	EXI60360F12		EXIT60360F12		718.7	326.0
432.0	43.3	1100	-	-	-	1	80	12.3	EXI54324F12	—	EXIT54324F12	—	727.5	330.0
480.0	43.3	1100					80	12.3	EXI60480F12		EXIT60480F12		743.0	337.0
Medium	Density ·	 Incoloy[®] 	Sheat	h										
144.0	43.3	1100							EXF48144F12		EXFT48144F12		709.9	322.0
162.0	43.3	1100	-	—	—	1	30	4.6	EXF54162F12	—	EXFT54162F12	—	727.5	330.0
180.0	43.3	1100							EXF60180F12		EXFT60180F12		743.0	337.0
Low Der	nsity - Inc	oloy® She	eath											
96.0	43.3	1100		1	1				EXF4896F12		EXFT4896F12		709.9	322.0
108.0	43.3	1100	—	_	1		20	3.1	EXF54108F12	_	EXFT54108F12	_	727.5	330.0
120.0	43.3	1100		—	—				EXF60120F12		EXFT60120F12		743.0	337.0

EX

Type EXC


Used primarily for heating water or aqueous solutions which are not corrosive to the steel vessel or the copper sheathed elements.

Type EXI

May also be used to heat water, especially in rinse tanks and spray washing systems where the chemical additives would be corrosive to copper.

Type EXF

To heat circulated oils or process liquids which are not corrosive to steel and Incoloy[®]. To heat compressed air or other gases. Lower density heaters should be specified for high viscosity liquids or high temperature, low flow steam or gas heating systems. Consult factory for technical assistance.

To Order Specify

	B' Dime	ensions		Indard			Watt D	Density	Without T	hormostat	With The	ermostat	Not W	/eight
kW	Inlet/	Outlet	208V,	240V	480V,	600V	Wall L	Jensity	without II	liennostat	50°F to 250°F (10°C to 120°C)		eigin
R V V	in	mm	1Ø	3Ø	1Ø	3Ø	M/in2	W/cm ²	Catalog	Part Number	Catalog	Part Number	lbs	ka
	m	mm		30		30	VV/III-	ww/cm-	Number	Fart Number	Number	Part Number	lus	kg
14" - 150	0 lb Flang	ged Steel	Vessel	With 3	3" (76 i	mm) In	let And	d Outlet						
High De	nsity - Co	opper She	ath											
300.0	43.3	1100					63	9.8	EXC60300F14		EXCT60300F14		877.4	398.0
360.0	43.3	1100				1	60	9.3	EXC60360F14		EXCT60360F14		903.9	410.0
432.0	43.3	1100		-	_	v .	60	9.3	EXC72432F14	—	EXCT72432F14		934.8	424.0
504.0	43.3	1100					60	9.3	EXC84504F14		EXCT84504F14		967.8	439.0
High De	nsity - In	coloy® Sh	eath											
300.0	43.3	1100					63	9.8	EXI60300F14		EXIT60300F14		877.4	398.0
360.0	43.3	1100	—	—		1	60	9.3	EXI60360F14	—	EXIT60360F14	—	903.9	410.0
432.0	43.3	1100					60	9.3	EXI72432F14		EXIT72432F14		934.8	424.0
504.0	43.3	1100					60	9.3	EXI84504F14		EXIT84504F14		967.8	439.0
576.0	43.3	1100	—		—	1	80	12.3	EXI72576F14	—	EXIT72576F14	—	934.8	424.0
672.0	43.3	1100					80	12.3	EXI84672F14		EXIT84672F14		967.8	439.0
Medium	Density	 Incoloy[®] 	Sheat	h										
180.0	43.3	1100							EXF60180F14		EXFT60180F14		903.9	410.0
216.0	43.3	1100	—	—		1	30	4.6	EXF72216F14	—	EXFT72216F14	—	934.8	424.0
252.0	43.3	1100							EXF84252F14		EXFT84252F14		967.8	439.0
Low Der	nsity - Inc	coloy® She	eath											
120.0	43.3	1100							EXF60120F14		EXFT60120F14		903.9	410.0
144.0	43.3	1100	—	1	1	1	20	3.1	EXF72144F14	—	EXFT72144F14	—	934.8	424.0
168.0	43.3	1100							EXF84168F14		EXFT84168F14		967.8	439.0

Special Features

Flange Heaters

See Section B of the Caloritech[™] catalog for special flange heater features for use in circulation heater vessels.

Special Materials

Stainless steel or special alloy construction available for corrosive liquids of high temperature gas heating when outlet temperatures are in excess of 887°F (475°C).

Flanged Inlet and Outlet

Free Standing Frame

Circulation heaters may be mounted on factory supplied frame as shown.

Factory Mounted Control Panel

Custom designed, fully prewired control panels are available. See pages D27 to D33 for details.

Inlet and Outlet 180° Apart

To facilitate piping inlet and outlet piping may be positioned 180° apart or as required. Specify desired location of mounting lugs in relation to inlet and outlet. (Forward sketch to the factory to avoid mistakes)

Multistage Units

Circulation heaters can be supplied as multistage assemblies with either vertical or horizontal vessel orientation. See Figures 1 and 2.

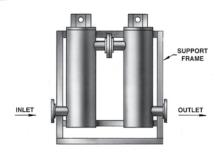
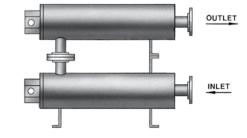



Figure 2

Figure 1

Higher Ratings

Units are available for operation at higher pressures or kilowatt ratings.

Cross Flow Baffles

Cross flow baffles improve heat transfer when heating viscous fluids and high temperature gases.

Valves

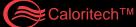
Pressure relief valves, bleed and drain valves are available.

Flow Switch

Differential Pressure Switch

Thermocouple

A built-in type J or K thermocouple mounted in the outlet pipe.


Built-In Controls

Mechanical or electronic high limit controls and temperature controls are available.

Larger Sizes

Vessel sizes to 36" (914 mm) diameter or larger are available with flanged inlets and outlets up to 16" (406 mm) diameter.

